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Abstract-The high stress concentration near the interface of fiber-matrix in composite materials
causes the accumulation of the interfacial damages and the degradation of mechanical properties
of the materials. In this paper. by using the residual surface displacement data, we evaluate the
microscopic damages in terms of Somigliano's dislocations in composites near the interface caused
by a series of unknown loadings. The goal of this research is to monitor the processes of the damage
evolution near the interface and to relate this microscopic damage to the degradation of the
macroscopic mechanical properties of the materials.

The problem is an inverse problem. which is substantially different from the conventional
forward analysis of structural mechanics. Therefore. the uniqueness and stability must be considered.
It is proved that the residual fields and all the characteristic quantities along the interface. such as
displacement jumps (Somigliano's dislocations). are uniquely determined by the residual surface
displacements. It follows that the traction free parts of the interface correspond to cracks, the
nonnal displacement jumps indicate debonding and the tangential displacement jumps measure the
interfacial sliding. A sp~'Cial technique is utilized to stabilize the numerical calculations.

I. INTRODUCTION

The local stresses are extremely large at the interface between fibers and matrix ofcomposite
materials when they are loaded. It is believed that these highly inhomogeneous stresses
cause the accumulation of the damages ncar the interface of the materials. and relate directly
to the degradalion of the mechanical properties of the materials. Therefore. the evaluation
of the interl:u:ial damages in composite materials is very important in predicting the material
failure.

Relations at the interface between the fields in fibers (inclusion) and those of the
matrix arc c,tlled interfacial conditions. In the conventional analysis of solid mechanics. the
inh:rl:lcial conditions are given beforeh,tnd. In Eshelby's (1957) problem of ellipsoidal
inclusion. the interface is assumed to be perfect bonding, i.e. both normal and tangential
displacements arc continuous along the interface. This analysis has been extended to the
sliding inclusion by Mum und Faruhushi (1984) und Mum el al. (1985). In their calculations
it is assumed that the inclusion is free to slip along the interface and the normal displacement
remains continuous. Other types of interfaces. such as the spring-type resistance model.
have also been used to investigate the intermediate stage between perfect bonding and
sliding inclusion (Lene and Leguillon. 1982). In any circumstance. the interlacial condition
and all the loading and unloading history must be given to make the problem mathematically
well defined.

The assumptions of perfect bonding. sliding and spring-type resistance etc. hold
true for certain kinds of materiuls and loading stages. But us dumages are accumulated
along the interface due to the stress concentration. none of these assumptions is valid on
the whole interface. Micro-cracks with different lengths und orientutions are formed along
the interface. The status of the interface varies from point to point. Some parts remain
perfect bonding. while the other purts begin to debond or slide. The formation of the
interfacial damages is really a very complicated process. It is difficult to make legitimate
assumptions on the interfacial conditions especially when the loading and unloading history
is uncertain. Therefore. the conventional analysis cannot be carried out to compute the
stress field and to evaluate the degradation of the mechanical properties of the material.

The goal of this research is to evaluate the microscopic damages of interfaces caused
by unknown loadings. by using the residual surface displacement data on the free surface of
the material around an individual fiber, and to determine the internal degradation of the
macroscopic material properties in terms of Somigliano's dislocations.
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The residual surface displacements are obtained in the following way. One reference
micrograph is taken before the material is put into usage. The other one is taken anytime
when we want to evaluate the damages of the materials and all the loadings are removed.
The residual surface displacements are relative and defined as the difference between the
one in the second micrograph and the one in the first micrograph. We do not need to have
any knowledge on the loading or unloading processes. If no damages have occurred. the
two micrographs must be identical and therefore, the observed residual displacements are
zero. If damages do occur along the interface, the residual surface displacements are
nonzero. It is assumed that no damage occur in the fibers and the matrix. therefore. the
observed residual displacements are caused by the interfacial damages. However. this
assumption will be eliminated and the result will be reported in a separate paper.

(a)

X" x~

n

(b)

(e)

Fig. I. (a) Half spacc .~, ;:, 0 is dcnoted by 0.0 is an inhomogeneity. Surface displacements in
x:e[-L. L) are used to recover the interfacial quantities. 101"" {x, =0. Ix:1 ;:'a::: 1001 ""
{x, "" O. Ix:1 < a:l; 101 = {XI;:' O. xi!a;+x;/a; = I}. (b) 0 and", for the transformation of (lila).
o ,;:; 0 ,;:; It corresponds to x on the interface 101; 0 ~ '" ~ It corresponds to x· on the interface
101. (c) 0 and", for the transformation of (ISb). 0 ,;:; 0 ,;:; It corresponds to x on the interface 101;

o~ '" ~ It corresponds to x' on the free surface 101 + IDOl. i.e. - L ~ x: ,;:; L.
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Fig. 2. Displacements and tractions are zero on 5,. a part of the boundary of D.

A unique set of experimental techniques has been developed to measure the surface
displacements (Cox et al.. 1986). It is based on stereoscopic analysis of pairs of optical
micrographs. The experimental measurements have high spatial resolution (0.1-100 JIm)
and high strain sensitivity (10- 4 over 10 JIm). Since a typical <liameter ofa fiber in composites
is about several micrometers. these techniques can be employed to obtain the microscopic
displacements around an individual fiber. Therefore. a composite material is modeled locally
as a semi-ellipsoid inhomogeneity in a half space shown in Fig. I(a). The inhomogeneity
becomes a continuous fiber when (II approaches infinity.

The processes of cracking. sliding and debonding along the interface Inl are accom
panied by localized plastic deformation or Somigliano's dislocations. Although the local
stresses arc high. the plastic strains occur only in a small layer near the interface. In this
paper. as the first step to our goal. we replace the "damaged layer" by a distribution of
Sornigliano's dislocations

h,(x) = [II,(X»), x E Inl (I)

where [...J denote the displacement jumps.
In Fig. 1('1) the coordinate systems (XI< X1) and (x;, x;) coincide. Our problem is as

follows.
By using the residual displacements on the free surface - L ~ x; ~ L, we evaluate

h,(x) as well as t,(x), the tractions on the interface, by the use of the inverse method. Once
h,(x) and t,(x) arc found, the traction free parts of the interface correspond to cracks, the
normal displacement jumps indicate debonding and the tangential displacement jumps
measure the interfacial sliding. In the following section, it is proved that this inverse problem
has a uniquc solution.

2. PROOf OF UNIQUENESS

The conventional forward analyses have been conducted extensively in the fields of
scicl1l:e and engineering. On the other hand, inverse problems are inherently ill-posed.
Definitive 'lOswers to questions of the existence, uniqueness and stability have been given
only for a comparatively sm.tli class of inverse problems.

Thc following lemma is needed for the uniqueness of our problem.

Lemma. Let S I be a part of the boundary of a two-dimensionalt elastic body D (see
Fig. 2). If there arc no body forces and

t The lemma holds for the three-dimensional case. A reviewer of this paper hinted its proof by use of the
Belli's reciprocal theorem. According to Muskhelshvili's book. Almansi (1907) proved that.
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U, = 0 on 5,

t, = 0 on 51

(2)

(3)

where ti" t, are the displacements and tractions, respectively, then ti, = 0, all = 0 in the
entire domain of the body D.

The proof of the lemma was given by the book of Muskhelshvili (I963).t
Now we can prove the uniqueness of the problem in Fig. I (a). Consider the domain

D-n and assume that the two states of displacements ti,!, ul and stresses all' ai) give the
same surface displacements and zero surface tractions on - L ~ x; ~ L. Then. the difference
fields

of course satisfy zero tractions and zero displacements on the sub-surface - L ~ x; ~ - a~

and a~ ~ x; < L. which is the 5. boundary of D-n. Therefore. from the above lemma. we
obtained

that is

!Ii = ti,2 and (ji~ = (j,~ in D·n.

It should be emphasized that the lemma holds regardless of the boundary condition
on Inl since 51 in the lemma is only a part of the boundary not the whole boundary.

Similarly. we can prove

This completes the proor or the uniqueness ror the problem stated in the end of the last
section.

J. FORMATION OF TIlE PROIlLEM

Let us derive the integral equation for the problem. The configuration is shown in
Fig. I(a). Let tI,(x) be the residual displacements in the domain D. caused by interfacial
dislocations of the material. x represents any field point in D. Choose another fixed point
in D. which is denoted by x' to distinguish it from x. Now we derive the integral equations
which relate the field quantities at x to those at x'.

Consider the domain occupied by the matrix. The small domain f. is chosen to exclude
the point x' from the integration domain Dn.

Due to the symmetry of the material constant tensor C'Ik! we have

(4)

where Gkm(x, x') is Green's function in the half space. with clastic moduli C,jkI' That is,
Gkm(x. x') is the displacement at point x in the XA direction due to a unit force at point x'
in the x:, direction. G"",.,(x. x') indicates (t'/c7x,) Gkm(x. x'). The expression of the Green's
function can be found in Dundurs (1962),

where

t Ihid.

G ( ') GIII (. ')+G 1Z)(. ")'I x, x = II x, X 'I X. X (5a)
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is Green's function for the infinite medium

{
o when i #J

bij = 1 when i =J

Ri = (XI _X'I)2 + (X2 _X;)2

and

G 1
1
2i(x, x') = 1 {-(I +1(2) log(R2)+21\(x l +x;)2/R~ +2x;[ -2(xl +x,)/R~

41tlt(1 +1\)

+4(xl +x,)J/R~-2x'I(2(xl+x'I)2/R~-I/R~)]}

G(,2,l(X, x') = 4 (~ {_(1+1\2)log(R2)-21\(xl+X;)2/R~
•• 1tlt +1\)

-2x;[2(x, +x;)/R~-4xl(.\"1+x;)2/R~-2x;/Rm

G\~(x, x') = 4~~(~~+ 1\) {( - I + 1(2) tan - 1[(X2 - x;)/(x 1+ X;)] + 21\(x 1+ X'I )(X2 - X;)/ R ~

- 2x,[21\(X2 -X;)/R ~ +4x I (XI +X; )(X2 -X;)/Rm
G~211(X, x') = .~ I {( I -1(2) tan ~ I [(X2 -X;)/(XI +X;)] + 2,,(x, +X, )(X2 -X;)/R ~

41tlt(1 +1\)

+ 2x'1 [ - 2"(X2 - X;)/ R~ +4xl (XI +X, )(X2 -X;)/R~]} (5c)
where

The Green's function in the half space, with clastic moduli C1jk/ is

G1j(x, x') = Gj)I*(x,x')+G1T*(x,x') (5d)

where the expressions of Gl)I*(X, x') and G:]I*(X, x') follow from those in (5b) and (5c)
by replacing It, v with It·, \'*, respectively.

When (4) is integrated in domain D-Q-e with respect to x and Gauss's theorem is
applied, we obtain

(6)

where nj(x) is the outer normal shown in Fig. I(a), and IDI is also defined in Fig. I(a).
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The boundary conditions and equilibrium for Green's function give

C;jkIGkmAx,x')nj(x) = 0 for x on iDI

C;jkIG.,n.lj(X, x') = 0 for x in D-n-r. (7)

and the boundary conditions and equilibrium for field u,(x) are

C'jk/UkAx)nj(x) = 0 for x on IDI

Cijk/UUj(X) = 0 for x in D-n-f..

When f: approaches to zero we have

where

(8)

(9)

when x' on IDO.l
when x' on 10.1
when x' on IDI

and

( 10)

Equation (10) follows from the fact that Green's function hehaws like log (R t) ncar
its singularities and (9) can be evaluated directly from the expression of the Green's function.

Using (7)-(10) and letting f. approach to zero, we can write (6) as

- fJum(x') +i Cijk/GkmJlX, x')u,(x)nj(x) ds(x) - i t,(x)G;",(x, x') ds(x) = 0 (II)
Inl Illi

where t,(x) = C,jklukJlx)n/(x) are the tractions on the interface.
The integral equations for the inhomogeneity 0. have the form similar to (11) with C'jkl

and Gij replaced by C:';k/ and G,~, respectively, and the sign of tlj(x) is taken properly. These
equations are

where

when x' on IDO.l
when x' on 10.1
when x' on IDI

and
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means that tractions are continuous along the interface. IDOl is defined in Fig. I(a).
We define the interfacial displacement jumps as

907

(13)

Our purpose is to determine u;(x). t;(x) and b;(x) from the residual surface displacements
on - L ~ ;(2 ~ L.

When x' is on 101, (II) and (12) yield

-0.5u",(x') + r CijklGkm,J(X, x')u;(x)nj(x) ds(x) - r t;(:,,)6,-",(x. x') ds(x) == 0 (14)
~ ~

O.5[h",(x')+u",(x')]+ r C~kIG:",,1(X, x')[b;(x)+ uj(x)JnAx) ds(x)
JOI

- r t;(x)G;:'(x.x')ds(x) == O. (15)J,nl

For any x' on the free surface - L ~ .t'2 ~ L. (II) and (12) become

i {z!m(X')
- 1;(X)G",,(x, x') ds(x) == 0

llli

i {-z!m(X')
- 1/(X)G;:'(x, x') ds(x) == 0

lUI

for x' on 101
for x' on 1001 (16)

for ,,' on ID0l
for x' on \DI . (17)

Equations (14)-(11) determine the six interfacial quantities U;. I; and hi from the
known surface displacements u'",(x') on - L ~ X2 ~ L. There are in total eighl equations in
(14)--(17) (since m == 1,2), with six unknowns. This indicates the ill-posed nature of the
inverse problem.

By employing transformation of variables [see Fig. I(b and c)J

x~ == 01 sin qJ. X2 == Q2 cos qJ, x, x' on 101, 0 ~ qJ, 0 ~ 1C (ISa)

for (14) and (15), and

x~ == 0,
, 2L

:(, == -qJ-L• • 1C • x, x' on 101 +IDOI, 0 ~ qJ,O ~ 1C (ISb)

for (16) and (17), we can write (14)-(17) as (see Appendix A)
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(" K(B,cp)V(O) dO = l·(ep). 0 ~ ep ~ n.
Jo (\ 9)

where K(O, ep) is an 8 by 6 matrix given in (AI3) and V(O) and V(ep) are

V(ep) = [0,0, O. 0. O. 0, -It';(ep), -u:(epW. forep E[(L-a~)n/:n, (L+az)1t/2Lj

V(ep) = [O,O,O,O,u"l(ep).I~(ep),O,Or. forcpf[(L-a,)n/2L.(L+az)n/2Lj. (21)

The nature of 0 and cp is indicated in Fig. I(b and c).
Equation (\9) is an integral equation for V(O). If we can solve (19) for V((}) by

using given V(ep), the surface displacements. we obtain all the characteristic quantities on
the interface. However, there are two difliculties remaining.

The first one is the instability. The stability of a problem refers to the influence of the
error of the input data on the perturbation of the solution. In (19) the right hand term
V(lp) comes from the experimental measurements. V(lp) is an approximation of VO(lp).
the real surfaee disphlcements. The accuracy of these data is estimated by the following
expression

(22)

where 11 •.. 11 is L 1 norm, that is

(23)

and VI'(lp) is the transpose of U(lp). The stability of the problem states that, as the
experimental data U(lp) arc sulliciently close to the exact data UO(lp) (i.e.!;« I), the solution
V(0) of (19) should be very close to the exact solution of the problem.

[t is believed that most mathematical problems corresponding to physical phenomena
are stable. However, inverse problems are generally unstable. Although we have proved the
uniqueness of the problem in Fig. I(a), due to the ill-posed nature of the Fredholm integral
equation of the first kind, Gao and Mura (\98941) and Mura et £II. (1986), eqn (19) is
extremely unstable. Even though U(lp) deviates only slightly from UO(IP), the solution of
(19) defers greatly from the exact solution.

The other dilliculty is that (19) has eight equations with six unknowns. (t cannot be
solved numerically in a conventional way. Therefore, special consideration must be taken.

4. METHOD OF SOLUTIONS

The so called "regularization method" was suggested by Tikhonov (1963) to solve
one-dimension<ll Fredholm integral equations of the first kind with regular kernel. Such
equations are numerically unstable. The regularization method is based on the radical idea
that the stability can be attained by narrowing the class of possible solutions through the
introduction of an auxiliary positive definite functional. Gao and Mura (1989a) have
utilized the regularization method in their calculations of residual plastic strains.

A new well-posed problem related to (19) is derived in the following way.
Since problem (19) has the unique solution, it is equivalent to the following variational

problem
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Min IIV(9) II 2

Subjectto Ilf K(9,fP)V(9)d9-U(fP)r = 0

909

(24)

where the norms follow the definition in (23).
Since U(fP) is the e-approximation of surface displacements, according to (22), the

variational problem (24) is further modified as

Min IIV(9) II 2

Subjectto IlfK(9,fP)V(9)d9-U(fP)r = s.

Problem (25) is equivalent to

where). is a Lagrange multiplier.
Let iX = 1/)., we can write (26) as

The Euler equation of (27) is

i"K·(O. c/»V(O) dO+iXV(c/» = U·(c/» cp E[O.n)
Il

and iX is a positive paramcter detcrmincd by

f(iX) = 0,

with

f(iX) = II f K(O, fP)V'(O) dO- U(fP)r -e

where V'(O) is the solution of (2Sa) and

K·(O, c/» = f KT(c/>, fP)K(O, fP) dcp c/> E [O.n]

U·(c/» = f KT(c/>, fP)U(cp) dfP c/> E [0, n].

(25)

(26)

(27)

(28a)

(28b)

(28c)

(2Sd)

KT(c/>. fP) is the transpose of the matrix K(c/>. fP).
Equation (28a) is a Fredholm integral equation of the second kind with a self

adjoint kernel K·(9, c/». It is a typical well-posed problem. It can be proved that the solution
of (28a) is stable for the small perturbation of the measurement term U(fP). That is, when
e in (22) is sufficiently small, the solution of (28a) is a very good approximation of the exact
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solution of the problem. More detailed discussions can be found in the authors' publication.
Gao and Mura (1989).

5. NUMERICAL CALCULATIONS

Equation (28a) is the new equation derived from our original problem (19). The
parameter 7 in (28a) satisfies the nonlinear equation (28b). For any chosen 7. equation
(28a) can be solved by using conventional techniques. An iteration procedure should be
used to adjust 7 such that equation (28b) is also satisfied.

There is no general method for solving nonlinear equations. Depending upon the
equation we deal with. the iteration procedure may not converge. Fortunately. it can be
shown (see Appendix B) that 1(2) is an increasing function and

1(7.) <0 (29)
hm2-0-+

and

/(7.) > O. (30)
Iim:l- ","-~.J

Therefore. the following convergent algorithm is constructed.

Step I : I: is chosen from our knowledge on the accuracy of the displacement data.
Step 2: Compute K·(O. (p). U·(q,) from (28c) and (28d).
Step 3: Let 0 be a given small positive number for convergence criterion. Choose
positive numbers IXI and 72 such that IXI < 1X2. and

Step 4: Choose IX = (IX I +7.2)/2 and solve (28a) again.
If I!(IX)I < 0 then take V'(O) as the solution and stop, else go to Step 5.
Step 5: If !('1.) > O.let Cll = :X I,:X2 = (1. else Iet:X 1 = IX, (X2 = 17.2'
Go to Step 4.

In the Step 4, equation (28a) is solved in the following way.
The interval [0, 7t] is divided into ten equal length elements:

Ei = L7to(i - I ),(7toiJ i = 1,2, ... , 10.

V'(O) is considered as a constant in E,. i.e.

V'(O) = V'(O.), for (Je E j

where

When cP is chosen as
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0.1

___- __zoO

Fig. 3. Surface displacement. ",. used to compute the interfacial damages.

1t. 1t
IO J -20 forj=1,2•...• IO.
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eqn (28a) yields to a system of algebraic equations. which can be solved for V'(OJ.
i = I. 2..... 10.

As we have mentioned in the introduction. the stereoscopic analyses of optical micro
graphs have high spatial resolution and high strain sensitivity. which enable us to measure
the microscopic surf'lce displacements around an individual tiber. When these measured
surface displacements are used in (28a). we can evaluate the interfacial damage quantities
111(11).11;(0}. 11(0). I~(O). hl(O). h~«(}).

An example is presented here to demonstrate our method. The configuration is shown
in Fig. I(a) with L = 1t/2. a l = 1.0. a2 = 0.942. Jt· = 16.15 GPa. v· = 0.3. Jt = 12.8 GPa
and v = 0.25.

After a series of unknown loadings. damages arc accumulated along the interface. Our
purpose is to determine the qu'lOtities u.(O). U2(O). 1.(0). '2«(J). h,(il). h 2(O) on the interface
by using surface displacement data and solving (28a).

In this example. to test the method and make comparison. u; is taken the same as the
surfal.:e disp!;ll.:ements caused by interfacial sliding dislocations (no debonding)

11,(/) = -a2aisinOcos20/{[a2sinOf+[tllcosOf}u

h2(O) = a I,d cos 0 sin 20/ {[a 2sin 01 2+ [a, l.:OS lW} 1.5 (31 )

and therefore we can compare the numerical results with those caused by the dislocations
in (31).0 is defined in (18) and shown in Fig. I(b). The displacement and stress fields caused
by (31) can be calculated easily since it is a well posed forward problem. In applying the
method to a practical problem. however. we need to obtain the data from experiment. The
surface displacements U; are shown in Fig. 3 and Fig. 4. These residual surface displacements

0.12

-0.1 Z

Fig. 4. Surface displacement. U;. used to compute the interfacial damages.
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Ulla,

.U

.12

.0'
.04

fJ
-.04

Fig. 5. Displacement Ul on the interface (in matrix side). Dashed line is the C;ol;uct solution. Solid
linc is the numerical result. 0 is shown in Fig. l(b-and c) .

•11 --
.12

.oe

-.oe

-.12

-.11

1f/2
I

I
I

I
I

" /'--","

(J

Fig. 6. Displacement u~ on the interface (in matrix side). Dashed line is the e:(ut.:t solution. Solid
line is the numerical result.

have error comparing with the exact surface displacements caused by the dislocation in
(31). The e in (22), which measures this error, is of order of 10' 5.

In the numerical calculations, the algorithm described in the beginning of this section
is utilized. Figures 5-9 show the comparison of numerical results (solid lines) to the exact
solution [dashed lines. caused by (31)). The positive directions of nand s are given in Fig.
l(a). The final value of (X is 0.0000008.

The numerical calculations show that the computed normal displacement jump is
negligibly small and the tractions vanish only at some points (not a part) of the interface.
Therefore we conclude that no cracking or debonding has happened along the interface.
Tangential interface sliding does occur and its distribution is shown in Fig. 9.

6. CONCLUSION

In this paper we present a method for the nondestructive evaluation of the interfacial
damages in composite matcrials. It has been proved that the residual fields and therefore
all the characteristic quantities along the interface such as the displacement jumps [ui(O)]
and the tractions ti(lJ), are uniquely dctermined by the residual surface displacements. It
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0.5

o

-0.5

- 1

"',,,
\

\
\ -/2

8

Fig. 7. Tangential traction I, on the interface. Dashed line is the exact solution. Solid line is the
numerical result.

tn/I'81

.'

.S

.4

.2

0 ... 8
.2

Fig. H. Normal tra.:tion I. on the interfa.:e. Dashed line is the ex;u:t solution. Solid line is the
numerical result.

ba/a,

0.5

0.4

0.3

0.2

0.1

~ 3-/4 --0.1 \ 8

-0.2
\
\

-0.3 \
\

-0.4
\

-0.5 "-
Fig. 9. Displacement jump b, on the interface. Dashed line is the exact solution. Solid line is the

numerical result.

follows that the traction free parts of the interface correspond to cracking, the normal
displacement jumps indicate debonding and the tangential displacement jumps measure the
interfacial sliding. It is clear that the residual surface displacement data do contain very
important information about the damages inside the materials. Once an appropriate algor
ithm is employed. we can extract the information from these data. The key point is that
the conventional numerical techniques cannot be used directly in such inverse problems.
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When we seek a numerical solution, we should pay special attention to the stability of the
problem. The method we presented in this paper can be employed for such a purpose.

The problem of evaluating the localized plastic damages has also been considered,
(Gao and Mura. 1989a.b). It is shown that. although the residual surface displacements arc
not sufficient to recover the shape of the damage domain and the exact distribution of
the residual plastic strains, some important characteristic quantities associated with the
dislocations of the material can be obtained. These quantities include stresses in the vicinity
of the damage domain. lower bounds of the strain energy or any other quadratic functions
of the plastic strains. By using the obtained characteristic quantities and some constitutive
models on the local plastic deformations, we can examine closely the localized microscopic
plastic deformation near the interface. and relate the local damages to the degradation of
macroscopic material properties.

The residual surface displacements serve as sensors for the damages inside the materials.
The coordination and feedback among experimental measurements. constitutive model and
evaluation of plastic deformation by surface displacement data enable us to elucidate the
relationship between the current condition of the interface and the rate of accumulation of
plastic damages due to any unknown loadings. All sorts of inverse or semi-inverse problems
can be solved in a similar approach.
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APPENDIX A

Fquatlon (1'1) c"n he ootained hy followllIg procedure. The configuration or our proolel1l i,; shown In
hg. 1(a).

In equations (1-1) and (15), hoth x anLl x' vary on interface 101. Therefore. transformation of variahles

" = x(/I): "1 = lJ, sin II, x~ = lJ, cos II

,,' = ,,'(,p): x; = a , sin ,p, x', = a, cos ,p, 0 ~ 'I', II ~ IT

changes (1-1). (15) to

J'. Ilm(ll. Ip)II,(II) L10- r'~,,"(O"I')/,(II)dll= O. 0.-;: '1''-;: IT

n Ju

J" n,~(IJ"I')II,(II) dll+ r' n~(II, ,p)h,(II) dll- r' ~~(II, ,p)/,(II) dO = O. 0 ~ ,p ~ IT

II Jo Ju

where the nature Ill' (I and II' is shown in Fig. I(h) and

(:\ I )

(:\2)

(A3)



Evaluation of interfacial damages

n.(O, tp) a -O.SO...O(tp-6) + { C'j.,G...Ax,x') ~nl}l{x= x(6). x' = x'(tp)}

n:,(o. tp) = -O.SO...O(tp-O)+ {q.,G:.u(x. x') ~n,}l {x = x(O}, x' = x'(tp)}

I:...(o.tp) = G...(x. x') ~I {x = x(9). x' = x'(tp)}

I::,(O. cp) = G:'(x. x') ~I (x = x(O). x' = x'(cp)}

91S

(A4)

(AS)

(A6)

(A7)

O(ep-O) in (A4) and (AS) is the Dirac delta function.
For equations (16) and (17). x varies on Inl and x' varies on the free surface xi =O. x;e[ -L. L), Therefore.

we usc

x = x(II): Xl = a. sin O. ,\"z = az cos e.

x' = x'(cp): xi =O. xi = 2~ tp-L. 0 ~ tp.e ~ It

which changes (16) and (17) to

r' r' {u'.,(cp}Jo r ...(0. cp)u,(1I) dO - Jo ~...(O. cp)t.(O) dO = 0

where R ... [(L-aJlt/2L. (L+a1)lt/2LI. and

I., I.' I.' {-II.. (cp)f:'(I/. cp)u,(II) dl/+ f:'(O. cp)b,(II) dO- ~:'(II. cp)/,(O) dO = 0 ..
o I) n

where 0 and cp are indicated in Fig. I(c) and

~...(O. cp) ... G...(x. x') ~;I {x ... x(O). x' ... x'(ep)}.

cpeR

CPfR

(AS)

(A9)

(AlO)

(All)

(AI2)

The corresponding, quantities for C~./O Gt...1 are denoted by r:'(I/. cp) and ~:'(O. cpl. It should be noted that the
transform x' .. x'(cp) in (All) and (AI2) is given in (AS) which is dilTerent from the one in (AI).

When we defined matrix 1(0, cp) as

nil nZI -I:II -I:1l 0 0

nil nzz -I:1l -I: zz 0 0

n~. n~. -I:~. -I:~. nT. n~.

K(O, tp) ...
nT1 n~z -I:T1 -I:~: 01: n~l (AI3)
f' l f: 1 -~II -~:I 0 0
f ll fa -~Il -~Z2 0 0

f1. ft. -~~l -~~. ftl f!l
f11 f!: -~T: -~!1 fr: f!:

then equation (19) is obtained from (A2), (A3). (A9) and (A 10).

APPENDIX B

Let 0 ~ }' ~ «. V"(O) and V"(O) be solutions of(27) corresponding to the given parameters}' and «. respectively.
Then. we have

and
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x:1 V'(O) II' +:Ii: K(II, 1p1V'(IJ) dO -.C(Ip>i/' ~ xII \~(Ii) '+ J: K(O, 1p)\ry(lJ) dO-C(Ip) I' (B2)

Therefore. when (Bl) is subtracted from (B2) we have

that is

(B3)

Furthermore. from (B 1) and (B3),

[(y)-[(x) = III K(O,Ip)V"(O) dO-U(lpf

-IIrK(O, Ip)\"'(/I) dO-C(lpf ~ y{ II V'(O) II' -II V'(O) II'} ~ 0 when y ~ x.

The above equation indicates that ((x) is an increasing function.
Inequalities (29) and (30) can be obtained in the following way. As :x goes to zero, the dominant terms in

(27) are

III K(II, Ip)V'(II) dll- U(lplll' -(:

and the minimum is reached when V(II) is taken as the solution of (19). Therefore.

[(x) = -1:<0, as:x-O'. (84)

As X goes to positive inlinity, II V(O) II goes tOlero in order to keep the term:x II V(I!) II' in (27) tinite. Therefore

[(x) = IIlJ(l/J);I'-I:>O, asx- +x. (85)

The last inequality holds because I:. the error or displacement measurements, should be in lower order comparing
with the displ;lcelTlents themselves.


